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Abstract: Tremendous amounts of plastic waste are generated daily. The indiscriminate disposal
of plastic waste can cause serious global environmental issues, such as leakages of microplastics
into the ecosystem. Thus, it is necessary to find a more sustainable way to reduce the volume of
plastic waste by converting it into usable materials. Pyrolysis provides a sustainable solution for
the production of carbonaceous materials (e.g., char). Plastic-waste-derived char can be used as an
additive in epoxy composites to improve the properties and performance of neat epoxy resins. This
review compiles relevant knowledge on the potential of additives for epoxy composites originating
from plastic waste. It also highlights the potential of plastic-waste-derived char materials for use in
materials in various industries.

Keywords: waste treatment; waste valorization; thermochemical process; epoxy resin

1. Introduction

Plastic waste is complex and resistant to chemical and biological degradation [1].
Various practices involving landfilling, incineration, and mechanical and chemical

recycling are usually employed to dispose of plastic waste [2–4]. Nevertheless, such
practices have limitations associated with the economic returns, energy consumption, gas
emissions, and quality of the resultant materials [1]. According to a recent report prepared
by the Organization for Economic Cooperation and Development, the amount of plastics
produced today is double of that produced 20 years ago; only 9% of the plastics are recycled,
and the bulk is not properly managed. Mismanaged plastic waste is a serious source of
pollution and toxins and has negative impacts on the environment [5]. The leakage of
microplastics into ecosystems from industrial plastic pellets, tire wear, synthetic textiles,
and road surface markings is a serious concern [6,7]. However, the development of plastic
waste treatment technologies has been considerably slower than the growing demand
for plastics.

Mechanical recycling is a typical method used for treating plastic waste. It suffers
from a low recycling rate, poor quality of the recycled products, an inability to treat con-
taminated substances, and difficulties in treating plastic waste containing additives [8–10].
Chemical recycling is considered as a potential method to counteract the problems faced by
mechanical recycling. Chemical recycling techniques involve depolymerization, solvolysis,
thermochemical conversion processes. Depolymerization is used to recover monomers
of mono plastics (i.e., only one type of plastic material used for manufacturing a whole
product) such as plastic bottles and food trays [11,12]. The recovered monomers are repoly-
merized into new products [13]. Solvolysis involves the dissolution of a plastic product and
is applied to certain types of plastic in the presence of solvents, e.g., expanded polystyrene
in its monomer [14,15]. The thermochemical recycling—including also thermo-, photo-, and
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other oxidation processes—of plastic waste has recently attracted attention as an alternative
and is considered an effective plastic waste conversion process [16–21]. The thermochemical
conversion process can not only recover the chemical energy of plastic waste [22]; it can also
convert plastic waste into original monomers, molecular intermediates for manufacturing
other products, or high-value chemicals [23]. Moreover, the thermochemical treatment of
plastic waste is environmentally benign [24] and economically feasible [25].

Among the various thermochemical plastic recycling methods, pyrolysis is particularly
attractive for several reasons. Pyrolysis can treat mixed plastics, allowing for the handling of
contaminated plastics [26]. A mobile system can be built because the scale can be efficiently
reduced according to the size of the operation. This allows the system to be installed at sites
with abundant feedstock [27]. Pyrolysis is a versatile process that anaerobically transforms
waste feedstock (e.g., plastic waste) into products in various phases (e.g., gas, liquid, and
solid) [28–30]. The product phase and yield can be readily controlled by varying the
operational parameters (temperature, heating rate, residence time, reactor type, etc.) [31].
In addition, pyrolysis has a smaller environmental footprint than landfill, incineration, and
gasification processes [32].

A solid-phase pyrolytic product (i.e., char) is obtained as a solid residue at the bottom
of a pyrolizer as a result of the pyrolysis of plastic waste [33,34]. Char is a carbonaceous
material that can be further upgraded to functional materials through pre- and/or post-
treatment and is considered a sustainable and environmentally friendly material for a wide
range of applications. For example, plastic-waste-derived char has shown promise as a
soil conditioner [35], adsorbent [36], catalyst [37], electrode [38], and carbon sequestration
material [39]. However, the use of plastic-waste-derived char in other applications, e.g., as
an additive for an epoxy resin to make its composite, has gained much less interest, despite
the need to develop sustainable alternatives.

Accordingly, the present review attempts to expand the application scope of plastic-
waste-derived char by providing an overview of the latest information on the utilization
of plastic-waste-derived char as an additive for epoxy resin. It is also expected to further
enhance the significance of the pyrolysis process as a method for synthesizing a new class
of sustainable materials from plastic waste.

2. Char Production from Plastic Waste

Char is a residual solid left in the pyrolizer at the end of the pyrolysis process. During
pyrolysis, the plastics initially decompose into wax. The wax becomes a pyrolytic liquid
that is further transformed into aromatic compounds and permanent gases. Ultimately,
char is formed [40]. Figure 1 presents the physical appearances of polypropylene- (PP)
and tire-waste-derived chars used as additives to produce epoxy composites [41,42]. The
formation of char during the pyrolysis of plastic waste has been ascribed to secondary
repolymerization reactions [43]. A heating rate lower than 80 ◦C min−1 is preferable for
char production, i.e., to achieve a sufficiently long vapor residence time for more efficient
secondary cracking reactions [44].

In general, the pyrolysis of plastics leads to lower char yields than the pyrolysis of
organic carbonaceous substances, such as lignocellulosic biomass, and decreases with
increasing pyrolysis temperature [45]. Therefore, to maximize the char yield from plas-
tic waste, the pyrolysis of plastic waste must be conducted at temperatures lower than
the typical pyrolysis temperatures for biomass (e.g., >300 ◦C). Table 1 summarizes the
pyrolysis conditions under which chars are produced from various plastic wastes, yields
of the pyrolytic products of the plastic wastes, and properties of the resultant chars. As
summarized in Table 1, most pyrolysis processes aimed at producing char from plastic
waste are conducted at temperatures lower than 300 ◦C. The char yields obtained from
the plastic pyrolysis range from 2 to 18 wt%, which are highly associated with the kind
of plastic waste. The char yield can be considered the char content in plastic waste that is
potentially used as an additive for epoxy composite.
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Figure 1. (a) Polypropylene-waste-derived char potentially used as an additive for producing epoxy 
composite. Reprinted from Sogancioglu et al. [41], Copyright (2019), with permission from Springer 
Nature. (b) Tire-waste-derived char potentially used as an additive for producing epoxy composite. 
Reprinted from Verma et al. [42], Copyright (2019), with permission from Wiley. 
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Figure 1. (a) Polypropylene-waste-derived char potentially used as an additive for producing epoxy
composite. Reprinted from Sogancioglu et al. [41], Copyright (2019), with permission from Springer
Nature. (b) Tire-waste-derived char potentially used as an additive for producing epoxy composite.
Reprinted from Verma et al. [42], Copyright (2019), with permission from Wiley.

The pyrolysis of a feedstock with a higher fixed carbon content than typical plastics
(e.g., tire waste) [46] could be conducted at typical pyrolysis temperatures aimed at char
production. Plastic-waste-derived char tends to have a higher carbon content than biomass-
derived char, primarily because plastic waste contains more carbon than biomass [47,48].
For instance, the carbon content of the plastic-waste-derived char potentially usable for
producing epoxy composite must be at least approximately 75 wt%, as shown in Table 1.
Furthermore, the chars made from plastic waste used as an additive for producing epoxy
composite have a wide range of particle sizes, ranging from 10 to 70 µm, and the particle
size can be further reduced to 50–70 nm via ball milling (Table 1).

Table 1. Production of char from different plastic waste feedstocks: pyrolysis conditions, product
yields, and char properties.

No. Plastic Waste

Pyrolysis Conditions Pyrolysate Yield (%) Char Properties

Ref.
T (◦C) Heating Rate

(◦C min−1) Gas Oil Char Surface Area
(m2 g−1)

Particle Size
(µm)

Elemental
Composition

(wt%)

1 Polypropylene
(PP) waste 300–700 5 17.7–

22.8
75.1–
79.6 2.2–2.7 13.5–22.0 - - [41]

2
Polyethylene
terephthalate
(PET) waste

450 - - - - - <63
C = 74.7, O = 21.8,
K = 2.4, Mg = 0.3,

Ca = 0.8
[49]

3
High-density
polyethylene

(HDPE) waste
300–700 5 9.1–14 83.8–

88.5 2.1–2.3 - <63 - [50]

4
Low-density
polyethylene
(LDPE) waste

300–700 5 11.5–
21.4

72.9–
78.4 6.4–10.1 - <63 - [50]

5 PET waste 300–700 - - - - - <63 - [51]

6 PET waste 300–700 - - - - - ~63 - [52]

7 Tire waste - - - - - - - - [53]

8 Tire waste ~525 - - - - 30.4 <45 C = 79.2, S = 1.5 [54]

9 Tire waste ~315 - - - - -
50–70 nm

(8-h milling
at >2500 rpm)

C = 86.0, O = 5.4,
S = 2.3, Zn = 5.1,
Al = 0.4, Si = 0.7

[42]
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Table 1. Cont.

No. Plastic Waste

Pyrolysis Conditions Pyrolysate Yield (%) Char Properties

Ref.
T (◦C) Heating Rate

(◦C min−1) Gas Oil Char Surface Area
(m2 g−1)

Particle Size
(µm)

Elemental
Composition

(wt%)

10 Food packaging
plastic waste 600 25 - - 18.6 - 10–15 - [55]

11
Expanded

polystyrene (PS)
foam waste

530 a 10 - - - 2712 - C = 94.4, O = 3.8,
H = 0.2, N = 0.2 [56]

12
PS waste +
Eucalyptus
biomass b

300–550 10 - - 18–38 - - Fixed C = 4.5–34.2 [57]

a After pyrolysis, the char was activated at 800 ◦C for 1 h and treated with 10% HCl; b PS waste/biomass
ratio = 1/2 or 1/3 (w/w).

3. Application of Plastic-Waste-Derived Char as an Additive for Epoxy Composite

Studies have been conducted on the reuse of plastic-waste-derived char as an additive
material for the preparation of polymeric composites with enhanced properties [58]. The
representative results available in the literature are summarized in Tables 2 and 3. Figure 2
shows examples of epoxy composites comprising different plastic-waste-derived chars.
Sogancioglu et al. reported different epoxy composite materials made of polyethylene
(PE) waste and PP-waste-derived char [41,50]. They also examined the possibility of using
chars obtained from high-density PE (HDPE) and low-density PE (LDPE) waste as additive
materials to prepare epoxy composites. Increasing the dosage of HDPE-waste- and LDPE-
waste-derived char increased the electrical conductivity of the resultant composites with
semiconductor structures (Nos. 3 and 4 in Tables 2 and 3) [50]. The effect of the pyrolysis
temperature at which the PP-waste-derived char was produced on the properties of the
epoxy composite was also investigated between 300 ◦C and 700 ◦C. The results indicated
that an epoxy composite material obtained with a PP-waste-derived char (10% dosage)
produced at 300 ◦C exhibited the highest mechanical properties, such as tensile strength
(99 MPa) and Young’s modulus (7.7 GPa), which are higher than those of a neat epoxy resin
(No. 1 in Tables 2 and 3) [41].

Table 2. Synthesis methods of epoxy composite using the plastic-waste-derived char as an additive.

No. (Same as
No. in Table 1)

Epoxy
Resin

Char
Feedstock

Additive Dosage (%) Condition for Epoxy Composite Synthesis
Ref.

Char Other Supplement
(Dosage) Preparation Degassing Curing

1 Not
specified PP waste 10–50

• Hardener (30)
• Accelerator

(1)

• Stirred under
2000 rpm for
3 h

• 40 ◦C for
1 h

• 40–120 ◦C
for 3 d [41]

2 NPEL-128 PET waste 5–30

• Epamine
PC17 as
hardener (30)

• tris-DMP as
accelerator (1)

• Stirred under
1000 rpm for
3 h

•
Ultrasonicated
at 60 ◦C for
1 h

• RT for 1 h

• 40 ◦C for
1 d

• 60–120 ◦C
for 2 d

[49]

3 NPEK-114 HDPE
waste 10–50

• Epamine
PC17 as
hardener (30)

• tris-DMP as
accelerator (1)

• Stirred under
2000 rpm at
room
temperature
for 3 h

•
Ultrasonicated
at 60 ◦C for
1 h

• 40 ◦C for
1 h

• 40 ◦C for
1 d

• 60–120 ◦C
for 2 d

[50]
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Table 2. Cont.

No. (Same as
No. in Table 1)

Epoxy
Resin

Char
Feedstock

Additive Dosage (%) Condition for Epoxy Composite Synthesis
Ref.

Char Other Supplement
(Dosage) Preparation Degassing Curing

4 NPEK-114 LDPE waste 10–50

• Epamine
PC17 as
hardener (30)

• tris-DMP as
accelerator (1)

• Stirred under
2000 rpm at
room
temperature
for 3 h

•
Ultrasonicated
at 60 ◦C for
1 h

• 40 ◦C for 1
h

• 40 ◦C for
1 d

• 60–120 ◦C
for 2 d

[50]

5 NPEK-114 PET waste 10–50

• Epamine
PC17 as
hardener (30)

• tris-DMP as
accelerator (1)

• Stirred under
1000 rpm for
3 h

• RT for 1 h

• 40 ◦C for
1 d

• 120 ◦C for
2 d

[51]

6 NPEK-114 PET waste 10–50
• Hardener (30)
• Accelerator

(1)

• Stirred under
1000 rpm for
3 h

• RT for 1 h
• 40 ◦C for

1 d
• 60–120 ◦C

for 2 d

[52]

7 DTE-1200 Tire waste -
• DTS-1151 as

hardener

• After adding
char, mixing
for 10 min

• Adding
hardener,
stirred under
500 rpm for
5 min

- - [53]

8 Polires-188 Tire waste 3
• Cardolite

NC-562 as
hardener

• Mixed with
char in
acetone for
10 min

• Mixed with
hardener for
5 min

• RT for 2 h • 80 ◦C for
2 d [54]

9 CY-230 Tire waste 5–15
• HY-951 as

hardener (9)

• 100 ◦C and
200
revolutions
for 1 h

• Heated under
microwave at
80–100 ◦C for
1 h

• Cooled
down to
35–45 ◦C

• Mixed
with
hardener
for 5 min

• Solidified
for 1 d

• 110 ◦C for
3 h under
vacuum

[42]

10 MGS
RIMR-135

Food
packaging

plastic
waste

0.25–1
• MGS

RIMH-1366 as
hardener (30)

• Char
dispersion in
acetone at RT
for 1 h

• Mixed with
char at 25 ◦C
for 3 h

• Mixing at
50 ◦C for
30 min

• After
adding
hardener,
mixed for
15 min

• Exposed
to vacuum
infiltration
for 15 min

• 90 ◦C for
8 h

• 85 ◦C for
7 h under
IR

[55]

tris-DMP: 2,4,6-tris(dimethylaminomethyl)phenol; RT: room temperature; IR: infrared radiation

The characteristics of a composite made of epoxy resin and plastic-waste-derived char
are highly dependent on several factors, including the char feedstock, the conditions at
which the char is made, and char dosage, as those influence the carbon content and porosity
of char. At comparable materials and conditions (Nos. 1–5 in Table 3), the pores present on
char and the poor surface bonding of char particles lead to decreasing elongation at break.
The immobilization of polymer chains in char results in high tensile strength. Young’s
modulus and hardness are increased by the addition of char, most likely due to the carbon
content in char. Electrical conductivity is also increased by adding char to neat epoxy resin,
associated with aromatic structure in char structures.



Materials 2023, 16, 2602 6 of 11

Table 3. Comparing representative characteristics of neat epoxy and epoxy composites made from epoxy resin and plastic-waste-derived char.

No. (Same as
No. in Table 1)

Epoxy Composite
Elongation at Break (%) Tensile Strength (MPa) Young’s Modulus (GPa) Hardness (Shore D, Otherwise

Mentioned) Electrical Conductivity (S cm−1)
Ref.

Neat Epoxy Composite Neat Epoxy Composite Neat Epoxy Composite Neat Epoxy Composite Neat Epoxy Composite

1 PP waste
char/epoxy resin a 0.71 0.62 85 99 6.2 7.7 80 83 10−14 4.2 × 10−7 [41]

2 PET waste
char/NPEL-128 b 0.53 0.52 0.47 0.59 82 110.7 83 87.6 10−14 2.0 × 10−5 [49]

3 HDPE waste
char/NPEK-114 a 0.52 0.55 62 72 - - 80 85 8.4 × 10−13 4.7 × 10−5 [50]

4 LDPE waste
char/NPEK-114 a 0.52 0.25 62 42 - - 80 73 8.4 × 10−13 4.3 × 10−8 [50]

5 PET waste
char/NPEK-114 a 0.72 0.69 86 97 6.2 9.4 - - - - [51]

6 PET waste
char/NPEK-114 a - - 62 98 - - 80 85 - 7.98 × 10−5 [52]

7 Tire waste
char/DTE-1200 c - - - - - - - - - - [53]

8 Tire waste
char/Polires-188 - - - - 6.7 3.0 415.9 MPa 165.7 MPa - - [54]

9 Tire waste
char/CY-230 d 7.1 7.6 33.8 34.6 0.63 0.74 130 HRL 140.7 HRL 1.96 × 10−3 2.4 × 10−3 [42]

10

Food packaging
plastic waste

char/MGS RIMR
135 e

2.3 1.8 188.2 176.4 6.58 7.79 - - - - [55]

a Char made at 300 ◦C and char dosage of 30%; b Char dosage of 15%; c Char dosate of 1 wt%; Flexural strength = 69.4 MPa (neat epoxy) vs. 77.5 MPa (composite); Glass transition
temperature = 59.5 ◦C (neat epoxy) vs. 61.4 ◦C (composite); d Char made at ~315 ◦C and char dosage of 15%; e Char dosage of 1 wt%
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Figure 2. (a,b) Neat epoxy resin and epoxy composite made with a plastic-waste-derived char.
Reprinted from Öner [53] and licensed under CC BY 4.0. (c) Epoxy composite made with
polypropylene-waste-derived char. Reprinted from Sogancioglu et al. [41], Copyright (2019), with per-
mission from Springer Nature. (d) Epoxy composite made with a tire-waste-derived char. Reprinted
from Verma et al. [42], Copyright (2019), with permission from Wiley.

In addition to polyolefin (e.g., PE and PP)-waste-derived char, poly(ethylene tereph-
thalate) (PET)-waste-derived char has been employed as an additive material to produce
epoxy composites [49,52]. The tensile strength, surface hardness, and Young’s modulus
of the epoxy–PET-waste char composite were higher than those of a pure epoxy resin
(No. 2 in Tables 2 and 3) [49]. The impact of the pyrolysis temperature at which the PET
waste-derived char was produced on the composite performance was also explored [52].
An epoxy composite made with a PET-waste-derived char additive produced at 300 ◦C had
better properties (e.g., the tensile strength, elongation at break, conductivity, and surface
hardness) than epoxy composites made with PET-waste-derived char additives produced
at temperatures above 300 ◦C (No. 6 in Tables 2 and 3) [52].

More recently, Wang et al. used carbon nanotubes grown on an alumina-supported
iron catalyst via the pyrolysis of PP as a filler for an epoxy resin [59]. Ultrasonic dispersion
was applied to achieve a uniform dispersion and to load the carbon nanotubes in the epoxy
resin matrix. A PP-waste-derived carbon nanotube-based epoxy composite with a 2 wt%
carbon nanotube loading exhibited superior mechanical properties in comparison with a
neat epoxy resin, including a tensile strength of 37.3 MPa, fracture strength of ~112 Mpa,
Young’s modulus of ~3780 Mpa, and fracture strain of ~6.3%. In other words, the addition
of PP-waste-derived carbon nanotubes to the epoxy resin enhanced the toughness of the
epoxy composite while retaining its stiffness. The predominant toughening mechanism for
the PP-waste-derived carbon nanotube-based epoxy composite concerned the pull-out and
bridging of the carbon nanotubes.
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4. Summary and Outlook

The growing global demand for plastics is increasing the amount of generated plastic
waste, causing serious environmental issues worldwide. The pyrolysis process is advanta-
geous for reducing the volume of plastic waste and converting plastic waste into high-value
products such as fuels (e.g., gas and liquid pyrolysates) and functional materials (e.g., char).
The yield of each pyrolysate can be altered by controlling the pyrolysis conditions, such as
the temperature, heating rate, and feedstock residence time. In particular, plastic-waste-
derived char can be employed in the preparation of industrial materials as additives for
epoxy resins to prepare epoxy composites. A plastic-waste-derived bitumen modifier and
epoxy additive have shown potential as sustainable alternatives to a base bitumen and
neat epoxy resin. Thus, the conversion of plastic waste into an additive for epoxy resin is
a preferable option for mitigating the solid waste problem. Several research groups have
demonstrated that plastic waste is a potential feedstock for producing industrial polymeric
composites, providing a more eco-friendly approach than being discarded.

In the present review, recent outcomes achieved with char derived from different
plastic wastes as potential additives for epoxy resins are introduced and discussed. The
blending of conventional epoxy resin with plastic-waste-derived char leads to enhancing
several properties such as tensile strength, Young’s modulus, hardness, and electrical
conductivity. The extent of the enhancement is mainly associated with the kind of plastic
used as the char feedstock and the char production conditions. However, the relationship
and correlation between the composite characteristics and the char feedstock and synthesis
conditions have not yet been fully elucidated. Accordingly, more studies on optimizing
the characteristics of epoxy composite made of epoxy resin and plastic-waste-derived char
need to be conducted.

Another issue is that direct comparisons of the available literature results are difficult.
This is because the experiments have been conducted under different reaction conditions in
different studies, and more importantly, the necessary experimental details were not always
provided. Thus, it is hard to conclude that what kind of plastic and synthesis conditions
are best for improving the mechanical properties of epoxy composite. To overcome this
limitation, the methods or procedures for the synthesis of epoxy composites using plastic-
waste-derived char should be standardized with a categorization of the plastic waste
depending on its application.

Overall, the use of plastic-waste-derived char shows promise as an additive for prepar-
ing epoxy composites with enhanced properties. However, there are still limitations that
need to be overcome in order to industrialize the applications of plastic-waste-derived char.
With the technological developments in these approaches, the collection and transport of
plastic waste should be considered to make the applications for plastic-waste-derived char
more realistic.
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